Abstract
The aim of this study was to assess artifacts generated by zirconium, titanium, and titanium-zirconium alloy implants on magnetic resonance imaging(MRI), computed tomography(CT), and cone beam computed tomography(CBCT) and to correlate the findings to the dose-area product and exposure factors on CT and CBCT. Three phantoms were built by embedding zirconium, titanium, and titanium-zirconium implants in ultrasound gel. MRI, CT, and CBCT images were acquired by using multiple sequences and settings. For MRI, "artifact" was described as the length of signal void beyond the limits of the implant. For CT and CBCT, "artifact" was calculated by subtracting the gray level of the darkest pixel from the level of the lightest pixel. On MRI, zirconium implants had minor distortion artifacts, whereas titanium and titanium-zirconium implants created extensive artifacts (P < .05). On CT and CBCT, artifacts were less prominent with titanium and titanium-zirconium implants compared with zirconium (P < .05). Titanium grade 5 implants with 0.3 and 0.4 mm3 voxels produced the least severe artifacts. MRI images were less affected by artifacts from zirconium implants, whereas CT and CBCT images showed less severe artifacts from titanium and titanium-zirconium alloy implants. CT generated greater artifacts compared with CBCT. Larger CBCT voxel sizes reduced the dose-area product and the severity of artifacts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.