Abstract

Application of in situ chemical oxidation or reduction (ISCO/ISCR) technologies for contaminated soil remediation and its subsequent impact on soil is gaining increased attention. Reductive reactivity, generated from green tea (GT) extract mixed with ferrous (Fe2+) ions under alkaline conditions (the alkaline GT/Fe2+ system), has been considered as a promising ISCR process; however, its impact on soil has never been studied. In this study, the impact of applying the alkaline GT/Fe2+ system on soil was evaluated by analyzing the variations of the soil microbial community, diversity, and richness using next-generation 16S rRNA amplicon sequencing while mimicking the lindane-contaminated soil remediation procedure. Lindane was reductively degraded by the alkaline GT/Fe2+ system with reaction rate constants of 0.014 to 0.057 μM/h depending on the lindane dosage. Environmental change to the alkaline condition significantly decreased the microbial diversity and richness, but the recovery of the influence was observed subsequently. Bacteria that mainly belong within the phylum Firmicutes, including Salipaludibacillus, Anaerobacillus, Bacillaceae, and Paenibacillaceae, were greatly enhanced due to the alkaline condition. Besides, the dominance of heterotrophic, iron-metabolic, lindane-catabolic, and facultative bacteria was observed in the other corresponding conditions. From the results of principal component analysis (PCA), although dominant microbes all shifted significantly at every lindane-existing condition, the set of optimal lindane treatment with the alkaline GT/Fe2+ system had a minimized effect on the plant growth-promoting bacteria (PGPB). Nitrogen-cycling-related PGPB is sensitive to all factors of the alkaline GT/Fe2+ system. However, the other types, including plant-growth-inducer producing, phosphate solubilizing, and siderophore producing PGPB, has less impact under the optimal treatment. Our results demonstrate that the alkaline GT/Fe2+ system is an effective and soil-ecosystem-friendly ISCR remediation technology for lindane contamination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.