Abstract

Breast cancer is the most common women's cancer in the world. There is considerable current interest in developing anticancer agents with a new mode of action because of the development of resistance by cancer cells towards current anticancer drugs. Mamalian cells have been shown to contain small, cationic, microbicidal peptides. Antimicrobial peptides have drawn attention as a promising alternative to current antitumor agents. Such peptides have been isolated both from animal and human platelets and have been termed platelets microbicidal proteins (PMP). The aim of this work was to study antitumor activity of PMP in vivo on the model of mouse breast cancer in comparison with antitumor hexapeptide Arg-alpha-Asp-Lys-Val-Tyr-Arg (Immunofan). We demonstrated that the tumors treated with PMP were significant smaller than the control groups (P < 0.05). In experiments in vivo using CBRB-Rb(8.17)1Iem mice with transplanted tumors PMP inhibited tumor growth during the treatments and after its discontinuation. These findings indicate that PMP can exert antitumor effects. Therefore, PMP may be used for the development of therapy for the intervention of breast cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.