Abstract

Whole wheat is an exceptional source of phenolic compounds representing a promising phytochemical class to prevent diet-related chronic diseases thanks to its antioxidant activities. The present work reports the phenolic profile, the antioxidant capacity, the antimicrobial activity and the effect on Lactobacillus brevis growth of eight whole flours obtained from four ancient and modern wheat genotypes of Italian Triticum genus. Total phenolic content (TPC) and total flavonoid content (TFC) were quantified, and antioxidant activities were assessed using oxygen radical absorbance capacity (ORAC) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) in vitro tests. HPLC-DAD/FLD was used to detect the presence of phenolic compounds. Moreover, antimicrobial activity of whole flour extracts against some potentially pathogenic Gram negative and Gram positive bacteria and the effect of extracts on Lactobacillus brevis growth were assessed. Results showed quantitative differences (p < 0.05) in antioxidant activities, total phenolic content and concentrations of five phenolic acids (resorcinol, tyrosol, caffeic acid, syringic acid and ferulic acid) among the wheat genotypes. Pathogenic bacteria were significantly negatively affected by wheat extracts while the growth of L. brevis was stimulated. The principal component analysis (PCA) confirmed that the phenolic profile and the antioxidant activities were influenced by the genotypic characteristics of studied varieties, suggesting that the ancient Saragolla stand out for the most interesting phenolic profile. Overall, this research emphasizes how ancient and modern Italian Triticum spp. grains must be investigated to select the grains richer in bioactive compounds.Graphical abstract

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call