Abstract

Urinary tract infections (UTIs) have been frequently reported from different parts of the world. The current knowledge on distribution of causative agents of urinary infections and antibiotics susceptibility pattern is essentially required. In the present study, total 351 uropathogenic bacteria were isolated; among them most prevalent were Escherichia coli (75%), followed by Pseudomonas aeruginosa (8%), Proteus mirabilis (6%), Klebsiella pneumoniae (4%), Staphylococcus aureus (4%) and Enterococcus faecalis (3%). Most isolates of uropathogenic bacteria showed resistance to amoxicillin and trimethoprim, followed by chloramphenicol and kanamycin. Biosynthesis of sulfur nanoparticles (SNPs) was performed by co-precipitation method using sodium thiosulfate in presence of Catharanthus roseus leaf extract. The characterization data showed that SNPs were polydispersed, spherical in shape with size range of 20–86 nm and having negative zeta potential of –9.24 mV. The potential antibacterial activity was observed for SNPs alone and in combination with antibiotics particularly amoxicillin and trimethoprim against majority of the uropathogens. The synergistic effect yielded increase in fold area with high activity index against tested uropathogens. Based on overall results, it can be recommended to use SNPs for the management of UTI alone and also in combination with antibiotics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.