Abstract

In wastewater treatment, flocculation is a widely used solid/liquid separation technique, which typically employs a charged polymer, a polyelectrolyte (PEL). Polyelectrolytes features, such as charge type, charge density and molecular weight, are essential parameters affecting the mechanism of flocculation and subsequent floc sedimentation. The effectiveness of the process is also influenced by the characteristics of the system (e.g., type, size, and available surface area of suspended particles, pH of the medium, charge of suspended particles). Thus, a good understanding of the flocculation kinetics, involved mechanisms and flocs structure is essential in identifying the most adequate treatment conditions, having also into consideration possible subsequent treatments. In this study, Eucalyptus bleached pulp and a cellulosic pulp with high lignin content (~4.5 wt%) obtained from Eucalyptus wood waste were used for bio-PELs production. Firstly, a pre-treatment with sodium periodate increased the pulps reactivity. To produce cationic cellulose the oxidation step was followed by the introduction of cationic groups in the cellulose chains, through reaction with Girard's reagent T. Applying different molar ratios (0.975 and 3.9) of Girard's reagent T to aldehyde groups led to cationic PELs with diverse charge density. On the other hand, to obtain anionic cellulose a sulfonation reaction with sodium metabisulfite was applied to the intermediate dialdehyde cellulose-based products, during 24 or 72 h, and anionic-PELs with diverse features were obtained. The developed water soluble, anionic and cationic bio-PELs were characterized and tested as flocculation agents for a textile industry effluent treatment. Initially, jar-tests were used to tune the most effective flocculation procedure (pH, flocculant dosage, etc.). Flocculation using these conditions was then monitored continuously, over time, using laser diffraction spectroscopy (LDS). Due to the small size of the dyes molecules, a dual system with an inorganic complexation agent (bentonite) was essential for effective decolouration of the effluent. Performance in the treatment was monitored first by turbidity removal evaluation (75–88% with cationic-PELs, 75–81% with anionic-PELs) and COD reduction evaluation (79–81% with cationic-PELs, 63–77% with anionic-PELs) in the jar tests. Additionally, the evolution of flocs characteristics (structure and size) during their growth and the flocculation kinetics, were studied using the LDS technique, applying the different PELs produced and for a range of PEL concentration. The results obtained through this monitoring procedure allowed to discuss the possible flocculation mechanisms involved in the process. The results obtained with the bio-PELs were compared with those obtained using synthetic PELs, commonly applied in effluents treatment, polyacrylamides. The developed bio-PELs can be competitive, eco-friendly flocculation agents for effluents treatment from several industries, when compared to traditional synthetic flocculants with a significant environmental footprint. Moreover, LDS proved to be a feasible technique to monitor flocculation processes, even when a real industrial effluent is being tested.

Highlights

  • Dye-containing wastewaters present several difficulties related to their treatment, due to their high chemical complexity, diverse dye structures usually with low molecular weight

  • There is a trend of decrease of zeta potential of the final product, with the increase of complexity of the raw material used in the periodate oxidation, and the lowest value was observed while performing cationization of the wood pulp with a high kappa number of 26.7 at low Girard’s reagent T (GT)/aldehyde molar ratio

  • Higher complexity of the raw material, namely larger lignin and xylan content, led to obtain cationic cellulose-based PELs with lower zeta potential that varied from 40 ± 3 mV (CDACwB; obtained using 0.975 of GT/aldehyde molar ratio) to 46 ± 1 mV (CDACwA; using 3.9 GT/aldehyde molar ratio)

Read more

Summary

Introduction

Dye-containing wastewaters present several difficulties related to their treatment, due to their high chemical complexity, diverse dye structures usually with low molecular weight. Among which textile, paper or pharmaceutical are nowadays the most significant producers of this type of effluents. The struggle with removing dye contaminants from aqueous streams is real, since the direct discharge of dye wastes into natural water reservoirs forbidden by strict regulations, can significantly affect the environment (reduction of the dissolved oxygen, a change of pH, as well as blocking sunlight). Discharged dyes without proper treatment are stable and remain in the environment for long periods of time (Hao et al, 2000). Bearing in mind the variation of the properties of dye containing effluents, due to the industrial process itself and dyes composition, as well as the presence of inorganic/organic-based additives used in the process (dos Santos et al, 2007), effective, economical and environmentally friendly treatments are required and in high demand

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call