Abstract

To evaluate the analgesic and sedative effects of Qilong Toutong Granule (, QTG) and explore its possible mechanisms. Kunming mice were randomly divided into 6 groups: normal control group, Zhengtian Pill (, ZTP) group, Western medicine group, and high-dose (5.2 g/kg), medium-dose (2.6 g/kg) and low-dose (1.3 g/kg) of QTG groups. After completing the prophylactic treatment for 3 days, hot-plate test and acetic acid-induced writhing test were used to assess the analgesic effect, and spontaneous locomotor test and sodium pentobarbital-induced hypnosis activity were adopted to estimate the sedative effect. Sprague-Dawley rats were grouped into normal control group, model group, ZTP group, rizatriptan group, and high-dose (3.6 g/kg), medium-dose (1.8 g/kg), and low-dose (0.9 g/kg) of QTG groups. After gavage for continuous 7 days, rats were intraperitoneally injected nitroglycerin, and 4 h later, blood samples were collected from postcava for measuring the levels of plasma calcitonin gene-related peptide (CGRP) and beta-endorphin (β-EP) by radioimmunoassay. Subsequently, rats were perfused transcardially and the brain tissues containing the trigeminal nucleus caudalis (TNC) were achieved for detecting the number of Fos-immunoreactive cells by immunohistochemical method. In the mice experiments, compared with the normal control group, high- and medium-dose of QTG groups significantly raised the pain threshold (P<0.01), reduced the number of writhing response (P<0.01) and spontaneous activity (P<0.01), but had no influence on the sleeping rate of mice (P>0.05), and low-dose of QTG group also raised the pain threshold at 120 min (P=0.007), as well as lowered locomotor activity of mice at 2 h (P=0.003). On the study of migraine model rats, high- and medium-dose of QTG groups remarkably down-regulated the levels of plasma CGRP (P<0.01), up-regulated the levels of plasma β-EP (P<0.01) and inhibited the expression of Fos protein in TNC (P<0.01), compared with the model group. QTG has obvious analgesic and sedative action and its mechanism on relieving migraine may be through regulating the levels of neurotransmitters and/or neuropeptides, and inhibiting the activation of Fos pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call