Abstract

Anaerobic soil disinfestation (ASD) is a nonchemical soil treatment where an easily decomposable carbon source is incorporated into soil, which is then irrigated to saturation and tarped to create anaerobic conditions, which prompts shifts in the soil microbiota from aerobes to anaerobes. ASD has been tested successfully for soilborne disease management in a variety of cropping systems but has not been sufficiently investigated in ornamentals. In this study, ASD was evaluated in soil-based and soilless substrates commonly used in specialty cut flower production using two model pathosystems: Rhizoctonia solani-Zinnia elegans and Phytophthora drechsleri-Gerbera jamesonii. Each substrate was mixed with pathogen-infested vermiculite and amended with either wheat bran, tomato pomace, or soybean meal as the carbon source. Amended substrates were incubated at 25°C for 4 weeks and used as growing substrates for the two crops mentioned above, which were monitored weekly for disease development for up to 5 weeks posttransplant. Additional experiments tested the effect of plant age and inoculum concentration in the substrate on ASD efficacy. Results showed that ASD has the potential to be deployed successfully for the control of Rhizoctonia stem rot in both substrates. Conversely, ASD was not effective at controlling Phytophthora crown rot on gerbera daisy in any of the experiments conducted in this study. More research is needed to understand the influence of carbon amendments, inoculum thresholds, and environmental conditions on ASD efficacy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call