Abstract

Ozone chambers have emerged as an alternative method to decontaminate firefighters’ Personal Protective Equipment (PPE) from toxic fire residues. This work evaluated the efficiency of using an ozone chamber to clean firefighters’ PPE. This was achieved by studying the degradation of pyrene and 9-methylanthracene polycyclic aromatic hydrocarbons (PAHs). The following experiments were performed: (i) insufflating ozone into PAH solutions (homogeneous setup), and (ii) exposing pieces of PPE impregnated with the PAHs to an ozone atmosphere for up to one hour (heterogeneous setup). The ozonolysis products were assessed by Fourier Transform Infrared Spectroscopy (FTIR), Thin-Layer Chromatography (TLC), and Mass Spectrometry (MS) analysis. In the homogeneous experiments, compounds of a higher molecular weight were produced due to the incorporation of oxygen into the PAH structures. Some of these new compounds included 4-oxapyren-5-one (m/z 220) and phenanthrene-4,5-dicarboxaldehyde (m/z 234) from pyrene; or 9-anthracenecarboxaldehyde (m/z 207) and hydroxy-9,10-anthracenedione (m/z 225) from 9-methylanthracene. In the heterogeneous experiments, a lower oxidation was revealed, since no byproducts were detected using FTIR and TLC, but only using MS. However, in both experiments, significant amounts of the original PAHs were still present even after one hour of ozone treatment. Thus, although some partial chemical degradation was observed, the remaining PAH and the new oxygenated-PAH compounds (equally or more toxic than the initial molecules) alerted us of the risks to firefighters’ health when using an ozone chamber as a unique decontamination method. These results do not prove the ozone-advertised efficiency of the ozone chambers for decontaminating (degrading the toxic combustion residues into innocuous compounds) firefighters’ PPE.

Highlights

  • Among urban occupations, firefighting is by far one of the riskiest professions

  • The experiments performed in moistened conditions generated the same products (Figure 5). These results showed that, the use of an ozone chamber was a relatively fast method which did not require effort for the firefighters, it was not efficient to clean the Protective Equipment (PPE) because a significant amount of polycyclic aromatic hydrocarbons (PAHs) still remained even after one hour of treatment

  • All experiments were performed with pyrene and 9-methylanthracene, which were compounds that might be present in fire residues and in firefighters’ contaminated PPE

Read more

Summary

Introduction

Among urban occupations, firefighting is by far one of the riskiest professions. Aside from potential injuries and fatalities [1], firefighters are exposed to a large variety of chemicals [2], including toxic fire residues that are associated with some types of cancer [3].Several studies around the world evaluated the cancer incidence in firefighters, comparedInt. Among urban occupations, firefighting is by far one of the riskiest professions. Aside from potential injuries and fatalities [1], firefighters are exposed to a large variety of chemicals [2], including toxic fire residues that are associated with some types of cancer [3]. Several studies around the world evaluated the cancer incidence in firefighters, compared.

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call