Abstract
Background and objectiveTo evaluate the performance of a novel malaria outbreak identification system in the epidemic prone rural area of Mpumalanga Province, South Africa, for timely identification of malaria outbreaks and guiding integrated public health responses.MethodsUsing five years of historical notification data, two binomial thresholds were determined for each primary health care facility in the highest malaria risk area of Mpumalanga province. Whenever the thresholds were exceeded at health facility level (tier 1), primary health care staff notified the malaria control programme, which then confirmed adequate stocks of malaria treatment to manage potential increased cases. The cases were followed up at household level to verify the likely source of infection. The binomial thresholds were reviewed at village/town level (tier 2) to determine whether additional response measures were required. In addition, an automated electronic outbreak identification system at town/village level (tier 2) was integrated into the case notification database (tier 3) to ensure that unexpected increases in case notification were not missed.The performance of these binomial outbreak thresholds was evaluated against other currently recommended thresholds using retrospective data. The acceptability of the system at primary health care level was evaluated through structured interviews with health facility staff.ResultsEighty four percent of health facilities reported outbreaks within 24 hours (n = 95), 92% (n = 104) within 48 hours and 100% (n = 113) within 72 hours. Appropriate response to all malaria outbreaks (n = 113, tier 1, n = 46, tier 2) were achieved within 24 hours. The system was positively viewed by all health facility staff. When compared to other epidemiological systems for a specified 12 month outbreak season (June 2003 to July 2004) the binomial exact thresholds produced one false weekly outbreak, the C-sum 12 weekly outbreaks and the mean + 2 SD nine false weekly outbreaks. Exceeding the binomial level 1 threshold triggered an alert four weeks prior to an outbreak, but exceeding the binomial level 2 threshold identified an outbreak as it occurred.ConclusionThe malaria outbreak surveillance system using binomial thresholds achieved its primary goal of identifying outbreaks early facilitating appropriate local public health responses aimed at averting a possible large-scale epidemic in a low, and unstable, malaria transmission setting.
Highlights
Background and objectiveTo evaluate the performance of a novel malaria outbreak identification system in the epidemic prone rural area of Mpumalanga Province, South Africa, for timely identification of malaria outbreaks and guiding integrated public health responses
The malaria outbreak surveillance system using binomial thresholds achieved its primary goal of identifying outbreaks early facilitating appropriate local public health responses aimed at averting a possible large-scale epidemic in a low, and unstable, malaria transmission setting
It is estimated that 100 million people are at risk from malaria epidemics [3] and the potential value of predicting malaria outbreaks and epidemics has been recognized [4]
Summary
To evaluate the performance of a novel malaria outbreak identification system in the epidemic prone rural area of Mpumalanga Province, South Africa, for timely identification of malaria outbreaks and guiding integrated public health responses. Epidemics generally refer to increases in disease in relatively large populations, while outbreaks are considered to be more focal in occurrence and often precede an epidemic by a number of weeks [5]. Effective outbreak containment demands prompt recognition and reporting of an unexpected increase in malaria cases to those responsible for control activities [7]. This is a challenge in under-resourced malaria-affected African regions where limited public health information systems exist [8]. It is critical in these areas that tools to assist programmes and responses are successfully deployed at operational level [9]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.