Abstract

The aim of this study was to improve an invitro system in order to gather optimized information on the digestion of different forages in the horse's upper gastrointestinal tract. Therefore, foregut digestion of several forages was simulated invitro (Part 1). The effect of different pH values on invitro fructan degradation of two selected grasses (Part 2) was tested subsequently. Part 1: We hypothesized that our system produces representative results simulating digestive processes in the upper alimentary tract, but neglects microbial fermentation. In vitro digestion of six forages (grass mixture for horses, grass mixture for cows (GMC), tall fescue, English perennial ryegrass (ER), white clover, lucerne) was performed in two phases with pepsin and pancreatin. The results are consistent with current data from invivo studies, including a degradation of crude protein and monosaccharides as well as a relative increase in fibres. Interestingly, a loss of fructan was measured in two feedstuffs (ER/GMC: 4.1/4.4% DM fructan before and 0.59/0.00% DM after simulated foregut digestion). Part 2: As fructans are thought not to be fragmented by digestive enzymes, another hypothesis was developed: acidic hydrolysis leads to a degradation of fructans. To evaluate the influence of gastric pH on the digestion of fructan and protein, different pH values (2, 3 and 4) were adjusted in a second series of invitro foregut digestion trials with ER and GMC. As expected, the highest degradation of protein was seen at the lowest pH (protein in ER/GMC at pH 2: 6.11/8.28% DM and at pH 4: 7.73/10.64% DM), whereas fructan degradation was highest at pH 4 (fructan in ER/GMC at pH 2: 1.63/1.95% DM and at pH 4: 1.31/0.91% DM). We presume that not only acidic hydrolysis but also plant enzymes cause the loss of fructans in an acidic environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.