Abstract
An integrated biogeochemical model (PnET‐BGC) was formulated to simulate chemical transformations of vegetation, soil, and drainage water in northern forest ecosystems. The model operates on a monthly time step and depicts the major biogeochemical processes, such as forest canopy element transformations, hydrology, soil organic matter dynamics, nitrogen cycling, geochemical weathering, and chemical equilibrium reactions involving solid and solution phases. The model was evaluated against soil and stream data at the Hubbard Brook Experimental Forest, New Hampshire. Model predictions of concentrations and fluxes of major elements generally agreed reasonably well with measured values, as estimated by normalized mean error and normalized mean absolute error. Model output of soil base saturation and stream acid neutralizing capacity were sensitive to parameter values of soil partial pressure of carbon dioxide, soil mass, soil cation exchange capacity, and soil selectivity coefficients of calcium and aluminum. PnET‐BGC can be used as a tool to evaluate the response of soil and water chemistry of forest ecosystems to disturbances such as clear‐cutting, climatic events, and atmospheric deposition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.