Abstract

The RNA/DNA ratio commonly used as proxy for the nutritional condition of fish larvae is affected by RNA degradation during analysis. For evaluation of two strategies to improve RNA integrity, a three-week feeding trial was carried out to assess the suitability of two nematode species (fam. Panagrolaimidae) as feed for newly hatched carp larvae (Cyprinus carpio) in comparison to Artemia nauplii (Artemia sp.) and a commercial dry feed. Aiming for an increased reproducibility of RNA/DNA determination, a high-salt inactivation (RNA later) as well as a targeted approach with a recombinant RNase inhibitor were compared to the classical protocol using lab chip technology. Improved RNA integrity was observed with high-salt inactivation when compared with a strategy applying a specific RNase inhibitor or the classic protocol. Carp larvae fed Artemia for 2 weeks and then dry feed for 1 week revealed the best overall growth performance as well as survival [83.0 ± 35.2 mg fresh weight (FW), 20.0 ± 2.4 mm total length (TL), 86.6 ± 11.7% survival]. Larvae fed the nematode species Panagrellus redivivus for 1 week and subsequently dry feed for 2 weeks (37.4 ± 29.1 mg FW, 14.7 ± 2.8 mm TL, 76.0 ± 6.0% survival) performed better than larvae fed with dry feed alone (28.2 ± 29.6 mg FW, 14.3 ± 2.9 mm TL, 54.3 ± 14.2% survival) or those receiving Panagrellus for 2 weeks. Between both nematode species, Panagrellus was a better feed with regard to growth performance and survival. RNA/DNA ratios ranged between 0.65 ± 0.27 (8 days post-hatch) and 1.96 ± 0.63 (22 days post-hatch) and were in the same treatment order as the other growth parameters. RNA/DNA ratios were significantly correlated with the growth rate, and decreasing RNA/DNA ratios in larger larvae may reflect decreasing growth rates with size rather than decreased nutritional status. Here, an improved RNA/DNA ratio protocol is presented in a feeding trial that reveals the suitability of nematodes as a first feed for common carp larvae.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.