Abstract

An immunoisolation membrane formed by incorporating a high water content polyvinyl alcohol (PVA) hydrogel into a microporous polyether sulfone (PES) filter has been investigated in this study. The PVA hydrogel is formed in situ within the filter pores via glutaraldehyde (GA) crosslinking under acidic conditions. The tortuous nature of the microporous filter pores securely anchors the embedded hydrogel to provide excellent structural integrity. The high void fraction of the PES filter support (>80%) and high water content of the PVA hydrogel (>85% water by weight) allow excellent solute transport rates, while an appropriate level of glutaraldehyde crosslinking supplies the required molecular size selectivity. In vitro permeability measurements made with solutes covering a wide range of molecular sizes demonstrate high transport rates for small nutrient molecules with rapidly diminishing permeabilities above a molecular weight of approximately 1,000 Dalton. Implantation experiments show that the membrane properties are not deleteriously affected by prolonged in vivo exposure or common sterilization techniques. Thus, this hybrid hydrogel/filter membrane system offers a promising approach to the immunoisolation of implanted cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call