Abstract

In publications and conferences on the subject of wheel brakes, different concepts of electromechanically actuated wheel brakes can be found, as well as investigations into their suitability for the use in passenger cars. The vast majority of these brakes are disc or drum brakes, which are actuated by an electric motor. In the present publication, a brake concept is considered, that combines an electromagnetically actuated full-pad disc brake with a 10″ duo-duplex drum brake. The brake concept is researched in a project regarding brakes for autonomous shuttles and thus dimensioned using vehicle data of an example shuttle. The electromagnet was designed using finite element methods and the overall brake prototypically realized. The validation of the system design is carried out in component and system tests. The results show the suitability of the concept for the selected vehicle in terms of dynamics, installation space and energy requirements. However, there is a strong dependence of the braking torque output on the frictional sliding speed. Using hypothesis-based testing, electromagnetic effects like eddy currents are ruled out as a possible cause and the friction coefficient within the full-pad disc brake is identified as the main cause for the loss in torque. Consequently, the associated development conflict is identified and lies in the double function of the flux-carrying material in the electromagnet, which also acts as a friction partner for the braking disc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.