Abstract

Design patterns capitalize the knowledge of expert designers and offer reuse that provides for higher design quality and overall faster development. To attain these advantages, a designer must, however, overcome the difficulties in understanding design patterns and determining those appropriate for his/her particular application. On the other hand, one way to benefit from design patterns is to assist inexperienced designers in pattern detection during the design elaboration. Such detection should tolerate variations between the design and the pattern since the exact instantiation of a pattern is infrequent in a design. However, not all variations of a pattern are tolerated. In particular, some structural variations may result in non-optimal instantiations where the requirements are respected but the structure is different; such variations are called spoiled patterns and should also be detected and transformed into acceptable pattern instantiations. This paper first presents an improvement of our design/spoiled pattern detection approach, named MAPeD (Multi-phase Approach for Pattern Discovery). The latter uses an XML information retrieval technique to identify design/spoiled pattern occurrences in a design using, first, static and semantic information and, secondly, dynamic information. This multi-phase detection approach tolerates structural differences between the examined design and the identified design pattern. Furthermore, thanks to the matching information it collects, our identification technique can offer assistance for the improvement of a design. In its second contribution, this paper evaluates MAPeD by comparing its recall and precision rates for five open source systems: JHotDraw, JUnit, JRefactory, MapperXML, QuickUML. The latter were used by other approaches in experimental evaluations. Our evaluation shows that our design pattern identification approach has an average improvement of 9.98% in terms of precision over the best known approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.