Abstract

Intracranial aneurysm is commonly found in human brains especially for the elderly, and its rupture accounts for a high rate of subarachnoid hemorrhages. However, it is time-consuming and requires special expertise to pinpoint small aneurysms from computed tomography angiography (CTA) images. Deep learning-based detection has helped improve much efficiency but false-positives still render difficulty to be ruled out. To study the feasibility of deep learning algorithms for aneurysm analysis in clinical applications, this paper proposes a pipeline for aneurysm detection, segmentation, and rupture classification and validates its performance using CTA images of 1508 subjects. A cascade aneurysm detection model is employed by first using a fine-tuned feature pyramid network (FPN) for candidate detection and then applying a dual-channel ResNet aneurysm classifier to further reduce false positives. Detected aneurysms are then segmented by applying a traditional 3D V-Net to their image patches. Radiomics features of aneurysms are extracted after detection and segmentation. The machine-learning-based and deep learning-based rupture classification can be used to distinguish ruptured and un-ruptured ones. Experimental results show that the dual-channel ResNet aneurysm classifier utilizing image and vesselness information helps boost sensitivity of detection compared to single image channel input. Overall, the proposed pipeline can achieve a sensitivity of 90 % for 1 false positive per image, and 95 % for 2 false positives per image. For rupture classification the area under curve (AUC) of 0.906 can be achieved for the testing dataset. The results suggest feasibility of the pipeline for potential clinical use to assist radiologists in aneurysm detection and classification of ruptured and un-ruptured aneurysms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.