Abstract

Mass effect and vasogenic edema are critical findings on CT of the head. This study compared the accuracy of an artificial intelligence model (Annalise Enterprise CTB) with consensus neuroradiologists' interpretations in detecting mass effect and vasogenic edema. A retrospective stand-alone performance assessment was conducted on data sets of noncontrast CT head cases acquired between 2016 and 2022 for each finding. The cases were obtained from patients 18 years of age or older from 5 hospitals in the United States. The positive cases were selected consecutively on the basis of the original clinical reports using natural language processing and manual confirmation. The negative cases were selected by taking the next negative case acquired from the same CT scanner after positive cases. Each case was interpreted independently by up-to-three neuroradiologists to establish consensus interpretations. Each case was then interpreted by the artificial intelligence model for the presence of the relevant finding. The neuroradiologists were provided with the entire CT study. The artificial intelligence model separately received thin (≤1.5 mm) and/or thick (>1.5 and ≤5 mm) axial series. The 2 cohorts included 818 cases for mass effect and 310 cases for vasogenic edema. The artificial intelligence model identified mass effect with a sensitivity of 96.6% (95% CI, 94.9%-98.2%) and a specificity of 89.8% (95% CI, 84.7%-94.2%) for the thin series, and 95.3% (95% CI, 93.5%-96.8%) and 93.1% (95% CI, 89.1%-96.6%) for the thick series. It identified vasogenic edema with a sensitivity of 90.2% (95% CI, 82.0%-96.7%) and a specificity of 93.5% (95% CI, 88.9%-97.2%) for the thin series, and 90.0% (95% CI, 84.0%-96.0%) and 95.5% (95% CI, 92.5%-98.0%) for the thick series. The corresponding areas under the curve were at least 0.980. The assessed artificial intelligence model accurately identified mass effect and vasogenic edema in this CT data set. It could assist the clinical workflow by prioritizing interpretation of cases with abnormal findings, possibly benefiting patients through earlier identification and subsequent treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.