Abstract
Current noninvasive estimation of right atrial pressure (RAP) by inferior vena cava (IVC) measurement during echocardiography may have significant inter-rater variability due to different levels of observers’ experience. Therefore, there is a need to develop new approaches to decrease the variability of IVC analysis and RAP estimation. This study aims to develop a fully automated artificial intelligence (AI)-based system for automated IVC analysis and RAP estimation. We presented a multi-stage AI system to identify the IVC view, select good quality images, delineate the IVC region and quantify its thickness, enabling temporal tracking of its diameter and collapsibility changes. The automated system was trained and tested on expert manual IVC and RAP reference measurements obtained from 255 patients during routine clinical workflow. The performance was evaluated using Pearson correlation and Bland-Altman analysis for IVC values, as well as macro accuracy and chi-square test for RAP values. Our results show an excellent agreement (r=0.96) between automatically computed versus manually measured IVC values, and Bland-Altman analysis showed a small bias of -\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$-$$\\end{document}0.33 mm. Further, there is an excellent agreement ((p<0.01\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$(p<0.01$$\\end{document}) between automatically estimated versus manually derived RAP values with a macro accuracy of 0.85. The proposed AI-based system accurately quantified IVC diameter, collapsibility index, both are used for RAP estimation. This automated system could serve as a paradigm to perform IVC analysis in routine echocardiography and support various cardiac diagnostic applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Cardiovascular Imaging
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.