Abstract

Helicopter operations with externally slung loads are highly demanding for the flight crew. As the pilot does not have a direct view of the load, assistance is required from an additional crew member to achieve operational requirements (e.g., for load handling to achieve precise load positioning). An automatic load stabilization and positioning system for cargo operations has been designed with the aim to reduce pilot workload, damp load pendulum motion and to improve the load positioning performance. This system uses the concept of load-motion feedback to the rotor control. To avoid degradation of Handling Qualities (HQs), as found in previous investigations, a function has been developed that monitors pilot control inputs. Dependent on the amplitude and duration of pilot control stick deflection, the feedback signal for slung load damping is blended between two different gain sets. One set provides improved HQs during piloted control and one set provides good load damping when the pilot is passive. A further novel aspect is the evaluation of an automatic load control system using a Translational Rate Command as a method of helicopter control. A piloted simulation study has been conducted using this advanced load control system with automatic load stabilization and positioning. Three test pilots evaluated the system in different control law configurations using a Mission Task Element simulating an external load cargo operation. HQs and pilot workload were evaluated using the Cooper-Harper Rating Scale and NASA Task Load Index, respectively. The results of the study show that improved HQs and reduced pilot workload in combination with improved task performance can be achieved with the advanced slung load control system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.