Abstract
BackgroundProviding large numbers of undergraduate students in scientific disciplines with engaging, authentic laboratory experiences is important, but challenging. Virtual laboratories (vLABs) are a potential means to enable interactive learning experiences. A vLAB focusing on Western Blotting was developed and implemented in a 3rd year undergraduate Pathology course for science students to facilitate learning of technical molecular laboratory skills that are linked to development of diagnostic skills. Such skills are important for undergraduates in building a conceptual understanding of translation of laboratory techniques to changes in human biology due to disease.MethodsThe Western Blotting vLAB was developed and deployed using the Adaptive eLearning Platform (AeLP) developed by Smart Sparrow (https://www.smartsparrow.com/). The vLAB was evaluated to assess students' perceptions of their laboratory skills relevant to the diagnosis of Muscular Dystrophy. A blended learning rotation model was applied in which wet laboratory and vLAB environments for Western Blotting were both delivered to three consecutive cohorts of 3rd year science undergraduates undertaking a Muscle Diseases practical class. Evaluation questionnaires were administered at the completion of the practical classes.ResultsStudents indicated in online questionnaires that the Western Blotting vLAB was at least equivalent to the real lab in their perceived development of concepts, laboratory skills and diagnosis of disease.ConclusionsvLABs have great potential for improving students’ development of diagnostic skills. Further studies are required to determine the impact of vLABs on student learning.Electronic supplementary materialThe online version of this article (doi:10.1186/1472-6920-14-222) contains supplementary material, which is available to authorized users.
Highlights
Providing large numbers of undergraduate students in scientific disciplines with engaging, authentic laboratory experiences is important, but challenging
This is not to say that the lab equipment is redundant overall, but creates extraneous load when trying to acquire diagnostic skills, as the focus of attention may be on mastering the technical aspects of the apparatus instead of understanding the protein expression patterns that underlie the diagnosis of muscular dystrophy
To investigate whether such Virtual laboratories (vLABs) are acceptable and effective for learning, we developed a vLAB to demonstrate the process of analysing protein expression by muscle cells, which is a necessary step in the real-world diagnosis of muscular dystrophy and implemented it in a blended learning teaching environment
Summary
Development of the Western Blotting vLAB Development process There were two key development considerations: 1. the broader lesson had to be developed in view of the Muscle Diseases Practical and overall PATH3207 Musculoskeletal Diseases course learning objectives and 2. the Western Blotting vLAB had to be designed to achieve integration with the lesson about the molecular basis of muscular dystrophy whilst keeping it generic enough to be reusable in slightly varying contexts, i.e. teaching of Western Blotting for the purposes of technical skills only. ‘Yes, Not sure, No’), 4 point (‘no it did not - > yes’) and 5-point Likert scale questions to enable students to report their perceived understanding, confidence and learning of technical and diagnostic skills in the vLAB and the real lab environments. Diagnostic skills Evaluation questionnaires revealed that students perceived that the most useful skills learned by using the vLAB included application of laboratory methods (i.e. Western Blotting) to the diagnosis of disease. These perceptions were significantly improved when compared with the real lab in 2011 (p = 0.006; Figure 5). “Allows some experience but not the full one”; and “didn't see the full picture of what technical skills are involved”
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.