Abstract

Abstract The performance of a microporous activated carbon prepared chemically from olive stones for removing Cu(II), Cd(II) and Pb(II) from single and binary aqueous solutions was investigated via the batch technique. The activated carbon sample was characterized using N 2 adsorption–desorption isotherms, SEM, XRD, FTIR, and Boehm titration. The effect of initial pH and contact time were studied. Adsorption kinetic rates were found to be fast and kinetic experimental data fitted very well the pseudo-second-order equation. The adsorption isotherms fit the Redlich–Peterson model very well and maximum adsorption amounts of single metal ions solutions follow the trend Pb(II) > Cd(II) > Cu(II). The adsorption behavior of binary solution systems shows a relatively high affinity to Cu(II) at the activated carbon surface of the mixture with Cd(II) or Pb(II). An antagonistic competitive adsorption phenomenon was observed. Desorption experiments indicated that about 59.5% of Cu(II) and 23% of Cd(II) were desorbed using a diluted sulfuric acid solution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call