Abstract

Gypsum and S are applied to soils being irrigated with Na–HCO3 dominated coalbed natural gas (CBNG) produced water to protect soil structure and fertility. Wyoming law requires beneficial use of produced water and irrigation with CBNG produced water in the semi-arid Powder River Basin is becoming more common. Strontium isotopes were used to evaluate the effectiveness of the gypsum and S applications in preventing sodification of these irrigated soils. The isotope ratio of Sr on the cation exchange complex of irrigated soil falls between that of the gypsum amendment (0.7074) and that of local soil (0.712–0.713). Strontium isotopes indicate that, to a depth of 30 cm, as much as 50% of the Sr on the irrigated soil cation exchange sites originated from the applied gypsum amendment on a field irrigated for 3 a. This was also true to a depth of 5 cm on a field irrigated less than 1 a. Strontium isotope ratio measurements of vegetation illustrate plant utilization of Sr from gypsum amendments, thereby reinforcing the conclusions about the presence of Sr from gypsum on the soil’s exchange sites. This Sr tracing technique may be useful in a wide variety of settings where monitoring soil health is necessary, especially in settings where poor quality water is used for irrigation: a more common occurrence as demand for fresh water increases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call