Abstract
This study demonstrates the feasibility of a mobile aerial drone particle monitoring system (DPMS) to measure and detect changes in harvest dust levels based on moderate adjustments to harvester settings. When compared to an earlier harvester, a new harvester operated at standard settings produced 35% fewer PM2.5s, 32% fewer PM10s, and 42% fewer TSPs. Increasing the ground speed had an adverse effect on dust mitigation, while reducing it by half only offered a slightly more favorable margin. The mutual effects of some meteorological factors were found to be slightly correlated with PM10 and TSP readings and caused significant variability in PM2.5 readings. The current findings show similar trends to PM reduction estimates of previous studies, with only a nominal difference of 10 to 15% points. Overall, the DPMS was found to perform well within an acceptable statistical confidence level. The use of DPMSs could reduce the logistical needs, complexity issues, and feedback times often experienced using the Federal Reference Method (FRM). Further investigation is needed to verify its robustness and to develop potential correlations with the FRM under different orchard location and management practices. At this stage, the current aerial DPMS should be considered a rapid screening tool not to replace the FRM, but rather to complement it in evaluating the feasibility of dust abatement strategies for the almond industry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.