Abstract
We updated algorithms to identify breast cancer recurrences from administrative data, extending previously developed methods. In this validation study, we evaluated pairs of breast cancer recurrence algorithms (vs. individual algorithms) to identify recurrences. We generated algorithm combinations that categorized discordant algorithm results as no recurrence [High Specificity and PPV (positive predictive value) Combination] or recurrence (High Sensitivity Combination). We compared individual and combined algorithm results to manually abstracted recurrence outcomes from a sample of 600 people with incident stage I-IIIA breast cancer diagnosed between 2004 and 2015. We used Cox regression to evaluate risk factors associated with age- and stage-adjusted recurrence rates using different recurrence definitions, weighted by inverse sampling probabilities. Among 600 people, we identified 117 recurrences using the High Specificity and PPV Combination, 505 using the High Sensitivity Combination, and 118 using manual abstraction. The High Specificity and PPV Combination had good specificity [98%, 95% confidence interval (CI): 97-99] and PPV (72%, 95% CI: 63-80) but modest sensitivity (64%, 95% CI: 44-80). The High Sensitivity Combination had good sensitivity (80%, 95% CI: 49-94) and specificity (83%, 95% CI: 80-86) but low PPV (29%, 95% CI: 25-34). Recurrence rates using combined algorithms were similar in magnitude for most risk factors. By combining algorithms, we identified breast cancer recurrences with greater PPV than individual algorithms, without additional review of discordant records. Researchers should consider tradeoffs between accuracy and manual chart abstraction resources when using previously developed algorithms. We provided guidance for future studies that use breast cancer recurrence algorithms with or without supplemental manual chart abstraction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.