Abstract

Ex vivo tissue engineering is an effective therapeutic approach for the treatment of severe cartilage diseases that require tissue replenishment or replacement. This strategy demands scaffolds that are durable enough for long-term cell culture to form artificial tissue. Additionally, such scaffolds must be biocompatible to prevent the transplanted matrix from taking a toll on the patient's body. From the viewpoint of structure and bio-absorbability, a β-tricalcium phosphate (β-TCP) fiber scaffold (βTFS) is expected to serve as a good scaffold for tissue engineering. However, the fragility and high solubility of β-TCP fibers make this matrix unsuitable for long-term cell culture. To solve this problem, we developed an alginate-coated β-TCP fiber scaffold (βTFS-Alg). To assess cell proliferation and differentiation in the presence of βTFS-Alg, we characterized ATDC5 cells, a chondrocyte-like cell line, when grown in this matrix. We found that alginate coated the surface of βTFS fiber and suppressed the elution of Ca2+ from β-TCP fibers. Due to the decreased solubility of βTFS-Alg compared with β-TCP, the former provided an improved scaffold for long-term cell culture. Additionally, we observed superior cell proliferation and upregulation of chondrogenesis marker genes in ATDC5 cells cultured in βTFS-Alg. These results suggest that βTFS-Alg is suitable for application in tissue culture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.