Abstract

In animal care and management, there is an increasing demand for convenient methods of oral delivery of bioactive compounds to specific segments of an animal's gastrointestinal tract. The objective of this study was to test the suitability of microcapsules made with alginate and whey proteins of two different sizes (250 and 800 µm; containing 72 and 76 g kg(-1) of carvacrol respectively) for intestinal delivery of carvacrol in pigs. Encapsulated carvacrol was completely released from the microcapsules after 5 h incubation in simulated intestinal fluids or 6 h in (ex vivo) ileal digesta, whereas release in simulated gastric fluid was minimal. Tests with growing pigs showed over 95% of unencapsulated carvacrol was absorbed or metabolized in the stomach and the duodenum. Encapsulation effectively minimized carvacrol absorption in the stomach (P < 0.05), and increased carvacrol recovery in the small intestine (P < 0.05). Encapsulated carvacrol was completely released from both small and large size capsules within the gastrointestinal tract of pigs. Larger size microcapsules showed a slower in vitro release and greater in vivo recovery of carvacrol in the small intestine (P < 0.05) than the smaller ones. This study indicates alginate-whey protein microencapsulation is a feasible approach for targeted oral delivery of hydrophobic compounds to pig intestines; increasing capsule size increased delivery of carvacrol to the end of the small intestine. © 2015 Her Majesty the Queen in Right of Canada Journal of the Science of Food and Agriculture © 2015 Society of Chemical Industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.