Abstract

As the number of air passengers with disabilities is expected to increase in the coming decades, the significance of airport wayfinding accessibility has been recognized by airport stakeholders. Emerging assistive technologies have been used to accommodate passengers’ wayfinding needs; however, because of non-standard practices and the complexity of terminal designs, the literature only provides general guidance on improving airport wayfinding accessibility. There is a need for detailed analysis of quantitative traveler performance measures to evaluate airport wayfinding accessibility. This research is the first use of a wheelchair simulator to compare airport wayfinding signage with a mobile wayfinding application. A virtual model of the St. Louis Lambert International Airport main terminal was replicated using as-built computer-aided-design files. A federated simulation architecture was used to integrate the wheelchair simulator with a mobile wayfinding application. Wheelchair simulator experiments were conducted by analyzing twenty-four wheelchair users’ performance measures and eye tracking data. Although the mobile wayfinding application did not significantly reduce total travel time (–23.8 s) and deviation ratio (–3%), it reduced wheelchair users’ reliance on wayfinding signs by decreasing total glance frequency (–23.3 times) and total glance duration (–26.7 s) and helped to reduce travel anxiety in wheelchair users. The potential benefits of a mobile wayfinding application include improving traveler levels of service, reducing airport operating costs, and enhancing non-airline revenue. Overall, this study showed that, with the use of a wheelchair simulator, passenger performance could be captured and analyzed for evaluating the effectiveness of airport wayfinding accessibility and emerging assistive technologies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call