Abstract
Fine atmospheric particulates are associated with numerous environmental and health issues as they can penetrate deeply in the respiratory tract thereby adversely affecting the human health. This study aimed to investigate the concentrations of trace elements in the respirable (PM2.5) fraction of the atmospheric particulates and to understand their pollution status and health risks. The samples were collected from Islamabad, and the metals were extracted using HNO3 and HCl based extraction method. Atomic absorption spectroscopy was employed to quantify the concentrations of selected trace elements. PM2.5 exhibited considerable variations in their minimum (4.737µg/m3) and maximum (108.1µg/m3) levels. The significant contributors among the selected elements bound to PM2.5 were Ca (1016ng/m3), K (759.8ng/m3), Mg (483.0ng/m3), Fe (469.7ng/m3), and Zn (341.1ng/m3), while Ag (0.578ng/m3) was found at the lowest levels with an overall descending order: Ca > K > Mg > Fe > Zn > Cu > Pb > Ni > Cd > Mn > Sr > Cr > Co > Li > Ag. Multivariate PCA and CA identified industrial activities, combustion processes and automobile emissions as the main anthropogenic contributors to particulate pollution. Enrichment factors and geoaccumulation indices were computed to assess the pollution status. The results also revealed that among the trace elements, Cd showed extremely high contamination, followed by Ag, Zn, and Pb, which showed moderate to high contamination in the atmospheric particulates. Carcinogenic health risks from Pb and Ni were found to be within the safe limit (1.0 × 10-6); however, Cr, Co, and Cd exposure was linked to significant cancer risks. The present elemental levels in PM2.5 were also compared with the reported levels from other regions around the world.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.