Abstract

Two Air Gap technologies were investigated concerning critical process steps. Both approaches use SiO 2 for sacrificial material and buffered HF wet etch chemistry. These critical processes include pre-wet-etch-concerns and wet-etch-concerns. The results of a special spacer etch-back process are shown. A buffer layer of SiO 2 was introduced to relax the requirements on the dry back-etch process. The oxidation of SiC and SiCN films during dry etching and resist stripping is an issue of both technologies, because this may lead to an undercut of the interconnect lines during the buffered HF treatment. Nevertheless, this can be successfully avoided by the application of appropriate oxygen (O 2) free process media. Furthermore, the shifting of mechanical behaviour of such structures as a result of wet-etch treatment is investigated. The intrinsic stress of cantilever SiC films has the capability to cause pull-off forces to interfaces which may result in film delamination.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call