Abstract
Characterisation of particulates in therapeutic monoclonal antibody (mAb) formulations is routinely extended to the sub-visible size-range (0.1–10μm). Additionally, with the increased use of pre-filled syringes (PFS), particle differentiation is required between proteinaceous and non-proteinaceous particles such as silicone-oil droplets. Here, three orthogonal techniques: Raster Image Correlation Spectroscopy (RICS), Resonance Mass Measurements (RMM) and Micro-Flow Imaging (MFI), were evaluated with respect to their sub-visible particle measurement and characterisation capabilities. Particle formation in mAb PFS solutions was evaluated with increasing polysorbate-20 (PS-20) concentrations. All three techniques provided complementary but distinct information on protein aggregate and silicone-oil droplet presence. PS-20 limited the generation of mAb aggregates during agitation, while increasing the number of silicone-oil droplets (PS-20 concentration dependant). MFI and RMM revealed PS-20 lead to the formation of larger micron-sized droplets, with RICS revealing an increase in smaller sub-micron droplets. Subtle differences in data sets complicate the apparent correlation between silicone-oil sloughing and mAb aggregates’ generation. RICS (though the use of a specific dye) demonstrates an improved selectivity for mAb aggregates, a broader measurement size-range and smaller sample volume requirement. Thus, RICS is proposed to add value to the currently available particle measurement techniques and enable informed decisions during mAb formulation development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.