Abstract

Bone marrow mesenchymal stem cells (BM-MSCs) and adipose-derived progenitor cells (ADPCs) are potential alternatives to autologous chondrocytes for cartilage resurfacing strategies. In this study, the chondrogenic potentials of these cell types were compared by quantifying neo-tissue synthesis and assaying gene expression and accumulation of extracellular matrix (ECM) components of cartilage. Adult equine progenitor cells encapsulated in agarose or self-assembling peptide hydrogels were cultured in the presence or absence of TGFbeta1 for 3 weeks. In BM-MSCs-seeded hydrogels, TGFbeta1 stimulated ECM synthesis and accumulation 3-41-fold relative to TGFbeta1-free culture. In ADPC cultures, TGFbeta1 stimulated a significant increase in ECM synthesis and accumulation in peptide (18-29-fold) but not agarose hydrogels. Chromatographic analysis of BM-MSC-seeded agarose and peptide hydrogels cultured in TGFbeta1 medium showed extensive synthesis of aggrecan-like proteoglycan monomers. ADPCs seeded in peptide hydrogel also synthesized aggrecan-like proteoglycans, although to a lesser extent than seen in BM-MSC hydrogels, whereas aggrecan-like proteoglycan synthesis in ADPC-seeded agarose was minimal. RT-PCR analysis of TGFbeta1 cultures showed detectable levels of type II collagen gene expression in BM-MSC but not ADPC cultures. Histological analysis of TGFbeta1-cultured peptide hydrogels showed the deposition of a continuous proteoglycan- and type II collagen rich ECM for BM-MSCs but not ADPCs. Therefore, this study showed both protein and gene expression evidence of superior chondrogenesis of BM-MSCs relative to ADPCs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.