Abstract

Adsorbent tube materials, bed retainers and Tenax-TA were evaluated for their respective roles in adsorbing biogenic volatile organic compounds from air and their tendencies to cause chemical transformation of analytes upon thermal desorption. Stainless steel, Silcosteel ® and Sulfinert ® treated stainless steel tubes exhibited varying degrees of adsorption and reactivity towards some analytes. However, the typical short exposure of the sample stream to wall material before entering an adsorbent bed, minimizes the effect of these properties. Three forms of silica wool (untreated glass wool and siloxane-treated glass and fused silica wool), often used as adsorbent bed retainers, were evaluated and found to function as an adsorbent bed especially for oxygenated monoterpenes and sesquiterpenes. Tenax-TA was evaluated in stainless steel tubes (untreated and treated) with a 2 μm mesh woven wire disk (also untreated and treated) to circumvent the effects of using a silica wool bed retainer. Tenax-TA adsorbent in stainless steel, Silcosteel and Sulfinert tubes yielded equivalent results when compared with direct (cryogenic) pre-concentration analysis of a multi-component mixture of n-alkanes and selected biogenic VOC. Tenax-TA tubes that had been used for 15–20 bake out–sample–desorption cycles (field and laboratory sampling) were compared with freshly packed tubes and found to give equivalent results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.