Abstract
In the framework of Power Amplifier (PA) design for communications, frequency domain non-linear behavioural models have shown their potential as efficient complementary modelling tools when Field Effect Transistor compact models are not available or sufficiently accurate. The Admittance behavioural model, formulated in the V-I domain, is especially suitable for device size and fundamental frequency scaling. It is important to note that the direct extraction of this model, from the Nonlinear Vector Network Analyser (NVNA) load-pull (LP) measurements, requires some extra processing since it necessitates a Look-up-Table indexed to |V11| rather than |A11|. When using such models in PA design, there is the need for the user to select the necessary model complexity. To address this requirement, in this paper, a systematic analysis methodology, to guide the user, is presented and validated in different PA design scenarios. The methodology was tested using NVNA LP measurements of GaN Heterostructure FETs. A fifth order Admittance model formulation showed good accuracy in the studied PA design scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.