Abstract

Recently, the development of abiotic metal-mediated drug delivery has been significant growth in the fields of anticancer approach and biomedical application. However, the intrinsic toxicity of abiotic metal catalysts makes in vivo use difficult. Our group developed a system of cancer-targeting albumin-based artificial metalloenyzmes (ArMs) capable of performing localized drug synthesis and selective tagging therapy in vivo for cancer therapy. The toxicity of the system at higher concentrations was investigated in vitro and in vivo in the study to demonstrate its safety for potential application in clinical trials. In cell-based experiments, the study revealed that the cytotoxicity of metal catalysts anchored within the binding cavity of the cancer-targeting ArMs could be significantly reduced compared to free-in-solution metal catalysts. Moreover, the in vivo data demonstrated that the cancer-targeting ArMs did not cause considerable damage in organs or change in the hematological parameters in a single-dose (160 mg/Kg) toxicity study in rats. Therefore, the system is safe, highlighting that it could be used in clinical trials for cancer treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call