Abstract

The hardness-based regulatory approach for Cu prescribes an extrapolation of the toxicity-versus-hardness relationship to low hardness (< or =50 mg/L as CaCO3). Hence, the objective of the present research was to evaluate the influences of water quality on acute Cu toxicity to larval fathead minnow (Pimephales promelas) in low-hardness surface waters. Seasonal water sampling was conducted at 24 sites throughout South Carolina, USA, to determine the site-specific influences of soft surface-water conditions on acute Cu toxicity. Concurrent toxicity tests in laboratory water, matched for hardness and alkalinity (modified method), also were conducted to allow calculation of water-effect ratios (WERs). In addition, tests were conducted at recommended hardness levels (recommended method) for comparison of WER methodology in soft water. Surface-water conditions (average+/-standard deviation, n = 53) were hardness of 16+/-8 mg/L as CaCO3, alkalinity of 18+/-11 mg/L as CaCO3, and dissolved organic carbon of 6+/-4 mg/L. Dissolved Cu 48-h median lethal concentration (LC50) values varied nearly 45-fold across the dataset and greater than four-fold at individual sites. Spatial (p < 0.0001) and seasonal (p = 0.026) differences among LC50 values were determined for eight sites that had multiple toxicity results for one year. All modified WERs were greater than 1.0, suggesting that the site waters were more protective of Cu toxicity than the matched laboratory water. Some WERs generated using recommended methods were less than 1.0, suggesting limited site-specific protection. Based on these observations, extrapolation of the hardness-based equation for Cu at 50 mg/L or less as CaCO3 would adequately protect fathead minnow populations in soft surface waters. The WER results presented here demonstrate the inconsistency between hardness-based criteria and the methodology for deriving site-specific water-quality criteria in low-hardness waters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.