Abstract

In this research capability of biological treatment method via active sludge and aquatic fern evaluated in different operating conditions and they were optimized in order to remove Zn (II). A simple reactor performance for treatment of model and real wastewater on laboratory and semi-industrial scale was investigated. This refining process proceeded with special attention to the effect of solution pH-value, pollutant concentration, absorbent concentration and reaction time. The batch semi-industrial scale reactor represented over 90 % removal efficiency under pH-value of 6 and 5-5.5 for aquatic ferns and active sludge, respectively. Effective reaction times represented various durations for aquatic ferns and active sludge with respect of 120 minutes and 90 minutes. The two biological masses had the best performances with 6 g/l for aquatic ferns and 5 g/l for active sludge. In the presence of 5 ppm of Zn (II) as the objective heavy metal, both absorbents had over 93.2 % removal efficiencies. While obviously laboratory-scale attempts introduced higher acceptable reduction efficiencies via this economic applicable treatment method. Additionally, economic considerations clarified feasibility of this recommended simple method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.