Abstract

To evaluate numerical simulations of focused ultrasound (FUS) with a rabbit model, comparing simulated heating characteristics with magnetic resonance temperature imaging (MRTI) data collected during invivo treatment. A rabbit model was treated with FUS sonications in the biceps femoris with 3D MRTI collected. Acoustic and thermal properties of the rabbit muscle were determined experimentally. Numerical models of the rabbits were created, and tissue-type-specific properties were assigned. FUS simulations were performed using both the hybrid angular spectrum (HAS) method and k-Wave. Simulated power deposition patterns were converted to temperature maps using a Pennes' bioheat equation-based thermal solver. Agreement of pressure between the simulation techniques and temperature between the simulation and experimental heating was evaluated. Contributions of scattering and absorption attenuation were considered. Simulated peak pressures derived using the HAS method exceeded the simulated peak pressures from k-Wave by 1.6 ± 2.7%. The location and FWHM of the peak pressure calculated from HAS and k-Wave showed good agreement. When muscle acoustic absorption value in the simulations was adjusted to approximately 54% of the measured attenuation, the average root-mean-squared error between simulated and experimental spatial-average temperature profiles was 0.046 ± 0.019 °C/W. Mean distance between simulated and experimental COTMs was 3.25 ± 1.37 mm. Transverse FWHMs of simulated sonications were smaller than in invivo sonications. Longitudinal FWHMs were similar. Presented results demonstrate agreement between HAS and k-Wave simulations and that FUS simulations can accurately predict focal position and heating for invivo applications in soft tissue.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.