Abstract
Small errors in the alignment between CT Attenuation Correction (CTAC) images and Positron Emission Tomography (PET) acquisitions can result in significant changes in PET attenuation corrected images. Misalignment due to respiratory or cardiac motion can produce mismatch between the PET and CTAC acquisitions. This contributes to artifactual hypoperfusion defects that are interpretable as myocardial ischemia or infarct. Correction for the misalignment between the PET and CTAC images can eliminate these false positive artifacts. Two methods for correcting for this respiratory and cardiac misalignment were compared. The first was an existing procedure, the manual-shift method, using point-to-point, in-plane, two-dimensional (2D) measurements of the shifts in axial, sagittal, and coronal planes. A new PET image reconstruction using the corrected attenuation map shifted by the 2D measurements was then performed. In the second method, the Interactive ACQC method, visual alignment was performed between the left ventricle boundaries on fused images and automated calculation of necessary rigid three-dimensional (3D) alignment parameters was performed. A new PET image reconstruction was then performed with an attenuation map shifted by the prescribed alignment parameters. The two methods were compared for accuracy and workflow efficiency using five cardiac PET/CT cases, scanned on GE Discovery VCT and Discovery ST systems. Alignment measurements using the visual alignment process (the interactive ACQC method) improved productivity by over five minutes, on average. The results show that the interactive ACQC procedure yields similar results to those of the point-to-point procedure while providing improved workflow for cardiac PET attenuation correction quality control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.