Abstract

In most of the engineering applications, such as mining, agriculture, metallurgy, the equipments fail due to abrasive wear. Hardfacing is one of the most economical and most widely used methods of improving surface characteristics of engineering equipments (wear, corrosion) without changing the bulk properties of the components.Fe-Cr-C hardfacing alloys are well known for their excellent performances under severe wear conditions. The wear behaviour of hardfacing alloys depends on their chemical composition, on the microstructure obtained after welding, of the welding technology, respectively the welding parameters which strongly influence, for example, the dilution with the base material or formation of precipitated hard phases.The aim of this study was to characterize the microstructure of Fe-Cr-C hardfacing alloys and to investigate their abrasive wear behaviour. The research has been carried out using four types of Fe-Cr-C hardfacing alloys (8 12, 16 and 20 % Cr). The alloys were deposited on the low-carbon steel S355 JR by manual arc welding method. The abrasion wear testing was carried out using the Taber Rotary Abraser Equipment. The microstructure characterization and surface analysis were performed using optical microscopy and HV 10 hardness tests.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.