Abstract

A study was conducted to determine whether the results from the Superpave shear tester (SST) could measure the effect of nominal maximum aggregate size on rutting susceptibility of asphalt mixtures without the need of a model. Four mixtures were analyzed using direct measurements from the SST. Two of the mixtures were prepared with AC-5 asphalt cement and nominal maximum aggregate sizes of 19.0 mm and 37.5 mm. The other two were prepared with AC-20 asphalt cement and the same two gradations. The results were analyzed statistically and compared with the performance of the respective mixtures tested by the FHWA Accelerated Loading Facility (ALF). The specimens were compacted to a target air voids of 7 percent using the Superpave gyratory compactor. The testing sequence consisted of performing the simple shear at constant height (SSCH) test followed by the frequency sweep at constant height (FSCH) test at 40°C and 58°C. These temperatures were chosen because they represent, respectively, the highest temperature used in Superpave complete analysis and the target pavement temperature at 20 mm depth used in the ALF tests. After the SSCH and FSCH tests, the repeated shear at constant height (RSCH) test was performed on all samples at 40°C. The ALF provided a significant decrease in rutting susceptibility with increase in aggregate size; however, the SST was unable to separate mixtures with the same binders and the two different nominal maximum aggregate sizes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call