Abstract
Abstract A wind-wave forecast system, designed with the intention of generating unbiased ensemble wave forecasts for extreme wind events, is assessed. Wave hindcasts for 12 tropical cyclones (TCs) are forced using a wind analysis produced from a combination of the North American Regional Reanalysis (NARR) and a parametric wind model. The default drag parameterization is replaced by one that is more in line with recent studies where a cap at weak-to-moderate wind speeds is applied. Quadrant-based significant wave height (Hs) statistics are composited in a storm-relative reference frame and stratified by the radius of maximum wind, storm speed, and storm intensity. Improvements in Hs are gleaned from both downscaling the NARR winds and tuning the wave model. However, the paradigm whereby the drag coefficient depends solely on the wind speed is limiting. Results indicate that Hs is biased low in the right quadrants (for all statistical subcategories). Conversely, Hs is high biased in the left-rear quadrant even though the analysis wind field is underforecast there. At radii less than 100 nautical miles, the model peak wave direction is offset from the observed, with the model (buoy) peak more in line with (to the left of) the direction of the tropical cyclone motion. As a result, the predominant storm-relative wind direction, which is northwesterly in the left-rear quadrant, opposes that of the buoy peak wave direction, while the model peak is more crosswise with respect to the wind. This will likely reduce the magnitude of the wind stress in the model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.