Abstract
The nicotine metabolite ratio (NMR; 3-hydroxycotinine/cotinine) is an index of CYP2A6 activity. CYP2A6 is responsible for nicotine's metabolic inactivation and variation in the NMR/CYP2A6 is associated with several smoking behaviors. Our aim was to integrate established alleles and novel genome-wide association studies (GWAS) signals to create a weighted genetic risk score (wGRS) for the CYP2A6 gene for European-ancestry populations. The wGRS was compared with a previous CYP2A6 gene scoring approach designed for an alternative phenotype (C2/N2; cotinine-d2/(nicotine-d2 + cotinine-d2)). CYP2A6 genotypes and the NMR were assessed in European-ancestry participants. The wGRS training set included N=933 smokers recruited to the Pharmacogenetics of Nicotine Addiction and Treatment clinical trial [NCT01314001]. The replication cohort included N=196 smokers recruited to the Quit 2 Live clinical trial [NCT01836276]. Comparisons between the two CYP2A6 phenotypes and with fractional clearance were made in a laboratory-based pharmacokinetic study (N=92 participants). In both the training and replication sets, the wGRS, which included seven CYP2A6 variants, explained 33.8% (P<0.001) of the variance in NMR, providing improved predictive power to the NMR phenotype when compared with other CYP2A6 gene scoring approaches. NMR and C2/N2 were strongly correlated to nicotine clearance (ρ=0.70 and ρ=0.79, respectively; P<0.001), and to one another (ρ=0.82; P<0.001); however reduced function genotypes occurred in slow NMR but throughout C2/N2. The wGRS was able to predict smoking quantity and nicotine intake, to discriminate between NMR slow and normal metabolizers (AUC=0.79; P<0.001), and to replicate previous NMR-stratified cessation outcomes showing unique treatment outcomes between metabolizer groups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.