Abstract

The implementation and evaluation of a spherical perfectly matched layer (PML) within a Cartesian finite element method context using standard curl-conforming elements is presented in this paper. Results are compared to the long-standing 1st order absorbing boundary condition (ABC) and a new, rigorous implementation of a 2nd order ABC for curl-conforming elements. The 4 and 8 layer spherical PMLs are shown to offer very attractive levels of absorption, with reflections on the order of -60 to -70dB demonstrated. Numerical tests show that the guidelines for Cartesian PML absorbers, in terms of maximum conductivity, also carry over to the spherical PML. The 2nd order ABC is also shown to offer very good performance. Finally, coding issues for both the spherical PML and the analytical ABCs are briefly addressed

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.