Abstract

To develop powerful wind turbine generators using superconducting technology, high-performance superconducting racetrack coils are essential. Herein, we report an evaluation of a multifilamentary magnesium diboride (MgB2) conductor-based racetrack coil cooled and impregnated simultaneously by solid nitrogen (SN2). The coil was wound on a copper former with 13 mm winding width, an inner diameter of 124 mm at the curvature, and 130 mm length of the straight section. An in situ processed S-glass-insulated 36-filament MgB2 wire was wound on the former in two layers with 19.5 turns, and heat treated via the wind and react method without any epoxy resin. The coil was evaluated for critical temperature and transport critical current in the SN2 environment at different temperatures up to 31.3 K in self-field. The coil was able to carry 200 A transport current at 28.8 K in self-field. During coil charging and operation, SN2 effectively acted as an impregnation material. The test results demonstrate the viability to use MgB2 racetrack coil potentially with SN2 impregnation in advanced rotating machine applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.