Abstract

Solid oxide fuel cells (SOFCs) are electrical energy conversion devices with high efficiency and low pollution. In order to increase performances of SOFCs at intermediate temperature (700–800 °C) and to decrease materials cost, an alternative sol–gel synthesis method has been investigated to deposit La1−xSrxMnO3+δ (LSMx) as cathode thin films. Polycrystalline LSMx thin films were prepared by dip-coating using a polymeric solution. Lanthanum, strontium and manganese nitrates were used as raw materials. The viscosity of the solution was adjusted and the solution was deposited on polycrystalline ZrO2–8% Y2O3 ceramics. Prior to experiments, the substrate surface was eroded until a roughness of 20 nm and then cleaned with ethanol and dried. Film thicknesses were adjusted with the number of layers. Porosity and grain size of monolayers or multilayers were evaluated. Typical thickness of monolayer is 250 nm. A key parameter in the multilayer process was the intermediate calcination temperature (400, 700 or 1000 °C) of each further layer deposition. A correlation between this intermediate temperature and morphology, thickness and porosity was found; porosity is ranging from 3 to 40% and thickness can reach 1 micron for multilayers. Concerning electrochemical performances, the best results were obtained for LSM0.4 multilayers with an intermediate calcination temperature (called Ti) of 400 °C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.