Abstract

BackgroundThe aim of the proposed study was to evaluate the performance of a flat rectangular (2×10mm2) transducer operating at 4MHz. The intended application of this transducer is intravascular treatment of thrombosis and atherosclerosis. MethodsThe transducer’s thermal capabilities were tested in two different gel phantoms. MR thermometry was used to demonstrate the thermal capabilities of this type of transducer. ResultsTemperature measurements demonstrated that this simple and small transducer adequately produced high temperatures, which can be utilized for therapeutic purposes. These high temperatures were confirmed using thermocouple and MR measurements. Pulsed ultrasound in combination with thrombolytic drugs and microbubbles was utilized to eliminate porcine thrombi. ConclusionsThe proposed transducer has the potentials to treat atherosclerotic lesions using the thermal properties of ultrasound, since high temperatures can be achieved in less than 5s. The results revealed that the destruction of thrombi using pulsed ultrasound requires long exposure time and high microbubble dosage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.