Abstract

The aims of this study were to validate stiffness estimates of a phantom undergoing cyclic deformation obtained using a multiphase magnetic resonance elastography (MRE) imaging sequence by comparison with those obtained using a single-phase MRE sequence and to quantify the stability of the multiphase-derived stiffness estimates as a function of deformation frequency and imaging parameters. A spherical rubber shell of 10 cm diameter and 1 cm thickness was connected to a computerized flow pump to produce cyclic pressure variations within the phantom. The phantom was imaged at cyclic pressures between 18-72 bpm using single-phase and multiphase MRE acquisitions. The shear stiffness of the phantom was resolved using a spherical shell wave inversion algorithm. Shear stiffness was averaged over the slice of interest and plotted against pressure within the phantom. A linear correlation was observed between stiffness and pressure. Good correlation (R(2) = 0.98) was observed between the stiffness estimates obtained using the standard single-phase and the multiphase pulse sequences. Stiffness estimates obtained using multiphase MRE were stable when the fraction of the deformation period required for acquisition of a single image was not greater than 42%. The results demonstrate the potential of multiphase MRE technique for imaging dynamic organs, such as the heart.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.