Abstract
In this paper, the evaluation of the performance of a portable triple-point-of-argon apparatus, via the analysis of the calibration history of selected working (fused silica) standard platinum resistance thermometers (SPRTs), is presented. These have an extensive calibration history, both internally (using different apparatus) and externally at two National Measurement Institutes. A special procedure had to be developed, for the calibration of metal-sheathed SPRTs, in order to ensure adequate thermal contact between the SPRT and the well and to minimize the influence of stem conduction, inherent in the compact design of the maintenance system. The results show good agreement between the measurements performed with this system and those with the previously used apparatus, to a level of uncertainty consistent with the INTA calibration and measurement capability (CMC) of 3.0 mK (k = 2). This CMC is given by the Spanish accreditation body (ENAC), under accreditation No. 16/10.007, for the routine calibration of SPRTs at the triple point of argon. It is concluded that the portable apparatus is suitable for use as a transfer standard for the comparison of local realizations of the triple point of argon. This avoids the need to shipping fragile SPRTs, with a valuable long calibration history, and eliminates the contributions due the long-term stability of the thermometers subjected to transportation. The long-term stability of the portable apparatus reported in this work has only been determined in laboratory conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.