Abstract

We aimed to examine the possibility that polyethylene glycol (PEG) phantoms can simulate apparent diffusion coefficients (ADCs) of malignant tumors and the effectiveness of PEG phantoms using three 3.0 T magnetic resonance imaging (MRI) systems. In particular, the correlations between PEG concentrations and ADC values, the validation of ADC measurement precision, and the stability and reproducibility of PEG phantom were verified. A phantom containing 0, 0.625, 1.250, 2.5, 5, 10, 20 mM PEG was assessed using three MRI systems. The endpoints comprised correlations between PEG concentrations and ADC, validation of ADC measurement precision and the stability and reproducibility of the PEG phantom. The correlation coefficients between PEG concentrations and the ADC of the three MRI systems and among the three MRI systems revealed negative (r ≈ − 1.000, P < 0.001) and positive (r ≈ 1.000, P < 0.001) correlations. The ADCmean of 2.5–20 mM PEG was significant (P < 0.05 t tests), and that at ≥ 10 mM PEG was < 1.0 × 10–3 mm2/s. The %CV ranged from 1.20 to 4.62, and repeatability was confirmed by the 90% confidence interval. The maximum values for DifferenceChange over time and DifferencePri.vs.New were 0.20 and 0.19 × 10–3 mm2/s, respectively. In this study, we found that PEG concentrations ≥ 10 mM are required to simulate the ADCs of malignant tumors (ADC < 1.0 × 10–3 mm2/s). We also showed that the ADC value is easily controlled by adjusting PEG concentrations, and can be stably measured using our PEG phantom for at least 6 months. The PEG phantom can easily and stably simulate the ADC of malignant tumors with high reproducibility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.